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Outline

• Image sensors

• Fourier, sampling and quantization

• Data structures for digital images

• Histograms

Acknowledgements: Most of this course is based on the excellent courses offered by Prof. Shree Nayar at 

Columbia University, USA and by Prof. Srinivasa Narasimhan at CMU, USA. This was also based on Prof. 

Miguel Coimbra’s slides. Please acknowledge the original source when reusing these slides for academic 

purposes.



jcunha@det.ua.pt 3

Topic: Image Sensors 

• Image sensors

• Fourier, sampling and quantization

• Data structures for digital images

• Histograms
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Image Sensors

• Considerations

• Speed

• Resolution

• Signal / Noise Ratio

• Cost
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CCD (charge coupled device)

Higher dynamic range 

High uniformity

Lower noise

CMOS (complementary metal
Oxide semiconductor)

Lower voltage

Higher speed

Lower system complexity

Image Sensors

• Convert light into an electric charge
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CCD Performance Characteristics

• Linearity Principle: Incoming photon flux vs. Output Signal

• Sometimes cameras are made non-linear on purpose.

• Calibration must be done (using reflectance charts)---covered later

• Dark Current Noise: Non-zero output signal when

incoming light is zero

• Sensitivity: Minimum detectable signal produced by camera
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Sensing Brightness

Incoming light has a spectral distribution p

So the pixel intensity becomes

dpqkI
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How do we sense colour?

• Do we have infinite number of filters?

rod

cones

Three filters of different spectral responses
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Sensing Colour

• Tristimulus (trichromatic) values

dphkI RR

dphkI GG

dphkI BB

Rh

GhBh

BGR III ,,

BGR hhh ,,Camera’s spectral response functions:
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Sensing Colour

beam splitter

light

3 CCD

Bayer pattern



Sensing Colour
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Foveon X3TM
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Topic: Fourier analysis 

• Image sensors

• Fourier, sampling and quantization

• Data structures for digital images

• Histograms
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How to Represent Signals?

• Option 1: Taylor series represents any function 
using polynomials.

• Polynomials are not the best - unstable and not 
very physically meaningful.

• Option 2: Easier to talk about “signals” in terms 
of its “frequencies”

(how fast/often signals change, etc).
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Jean Baptiste Joseph Fourier (1768-1830)

• Had a crazy idea (1807):
• Any periodic function can 

be rewritten as a weighted sum 
of Sines and Cosines of 
different frequencies. 

• Don’t believe it?  
– Neither did Lagrange, 

Laplace, Poisson and other 
big wigs

– Not translated into English 
until 1878!

• But it’s true!
– called Fourier Series

– Possibly the greatest tool 

used in Engineering
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A Sum of Sinusoids

• Our building block:

• Add enough of them to get any 
signal f(x) you want!

xAsin(
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• We want to understand the frequency of our signal.  

So, let’s reparametrize the signal by instead of x:

• For every from 0 to inf, F( ) holds the amplitude A and phase of the 

corresponding sine  

– How can F hold both?  Complex number trick!

Fourier Transform

xAsin(

f(x) F( )
Fourier 

Transform

)()()( iIRF

22 )()( IRA )(

)(
tan 1

R

I
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Time and Frequency

• example : g(t) = sin(2∏ f t) + (1/3)sin(2∏ (3f) t)



jcunha@det.ua.pt 18

Time and Frequency

• example : g(t) = sin(2∏ f t) + (1/3)sin(2∏ (3f) t)

= +
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Frequency Spectra

• example : g(t) = sin(2∏ f t) + (1/3)sin(2∏(3f) t)

= +
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Frequency Spectra

• If I have a more “wideband” signal, I need more sines in 

the sum to approximate it



jcunha@det.ua.pt 21

= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= +

= 

Frequency Spectra
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= 
1

1
sin(2 )

k

A kt
k

Frequency Spectra
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Fourier Transform – more formally

Spatial Domain (x) Frequency Domain (u)

Represent the signal as an infinite weighted sum of an 

infinite number of sinusoids

dxexfuF uxi2

(Frequency Spectrum F(u))

Note:

Inverse Fourier Transform (IFT) dxeuFxf uxi2

1sincos ikikeik
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Properties of Fourier Transform

Spatial

Domain

Frequency

Domain

Linearity xgcxfc 21 uGcuFc 21

Scaling axf
a

u
F

a

1

Shifting 0xxf uFe
uxi 02

Symmetry xf uF

Conjugation xf uF

Convolution xgxf uGuF

Differentiation
n

n

dx

xfd
uFui

n
2
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Discrete Fourier Transform

• If we have a sampled signal f(i), where 

i=0…N-1, the FT will become the DFT
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Topic: Sampling and quantization 

• Image sensors

• Fourier, sampling and quantization

• Data structures for digital images

• Histograms
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Lighting

Scene

Camera

Computer

Scene Interpretation

Components of a Computer Vision System
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Digital Images

What we see
What a computer sees
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Simple Image Model

• Image as a 2D light-

intensity function

• Continuous

• Non-zero, finite value Intensity

Position

[Gonzalez & Woods]

),(0 yxf

),( yxf
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Analog to Digital

The scene is:

– projected on a 2D 

plane, 

– sampled on a regular 

grid, and each 

sample is

– quantized (rounded 

to the nearest 

integer) jifjif ,Quantize,
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Images as Matrices

• Each point is a pixel

with amplitude:

– f(x,y)

• An image is a matrix 

with size N x M

M = [(0,0) (0,1) …

[(1,0) (1,1) …

…

(0,0) (0,N-1)

(M-1,0)

Pixel
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Sampling Theorem

Continuous signal:

Shah function (Impulse train):

xf

x

Sampled function:
n

s nxxxfxsxfxf 0

xs

x
0x

n

nxxxs 0
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Sampling Theorem

Sampled

function: n

s nxxxfxsxfxf 0

FS u F u S u F u
1

x0
u

n

x0n

uF

m axu

A

u

uFS

m axu

0x
A

0

1
x

u

Only if
0

max
2

1

x
u

Sampling 

frequency
0

1

x

Freq Domain
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Nyquist Theorem

If
0

max
2

1

x
u

uFS

m axu

0x
A

0

1
x

u

Aliasing

Sampling frequency must be greater than m ax2u
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Aliasing

Picket fence receding

into the distance will

produce aliasing…

Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Matlab output:

WHY?
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Quantization

• Analog: 

• Digital: Infinite storage space per pixel!

• Quantization

),(0 yxf
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Quantization Levels

• G - number of levels

• m – storage bits

• Round each value to 

its nearest level

mG 2
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Effect of quantization
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Effect of quantization
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Image Size

• Storage space

– Spatial resolution: N x M

– Quantization: m bits per pixel

– Required bits b:

• Rule of thumb:

– More storage space means more image 

quality

mMNb
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Image Scaling

This image is too big to

fit on the screen.  How

can we reduce it?

How to generate a half-

sized version?
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Sub-sampling

Throw away every other row and 

column to create a 1/2 size image

- called image sub-sampling

1/4

1/8
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Sub-sampling

1/4  (2x zoom) 1/8  (4x zoom)1/2
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Sampling an Image

GOOD sampling
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Sampling an Image

BAD sampling -> Aliasing
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Sub-Sampling with Gaussian Pre-Filtering

G 1/4 G 1/8Gaussian 1/2
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Compare with...

1/4  (2x zoom) 1/8  (4x zoom)1/2
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Topic: Data structures for digital 

images

• Image sensors

• Sampling and quantization

• Data structures for digital images

• Histograms
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Data Structures for Digital Images

• Are there other ways to represent digital 

images?

What we see What a computer sees
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Chain codes

• Chains represent the 

borders of objects.

• Coding with chain 

codes.

– Relative.

– Assume an initial 

starting point for each 

object.

• Needs segmentation!

Freeman Chain 

Code

Using a Freeman Chain Code and 

considering the top-left pixel as 

the starting point:

70663422
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Topological Data Structures

• Region Adjacency 

Graph

– Nodes - Regions

– Arcs – Relationships

• Describes the 

elements of an image 

and their spatial 

relationships.

• Needs segmentation!

Region Adjacency Graph
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Relational Structures

• Stores relations

between objects.

• Important semantic 

information of an 

image.

• Needs segmentation

and an image 

description (features)!

Relational Table
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Topic: Histograms

• Image sensors

• Sampling and quantization

• Data structures for digital images

• Histograms
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Histograms

• In statistics, a 

histogram is a 

graphical display of 

tabulated frequencies.

Typically represented as 

a bar chart:
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Image Histograms

• Colour or Intensity 
distribution.

• Typically:
– Reduced number of 

bins.

– Normalization.

• Compressed 
representation of an 
image.
– No spatial information 

whatsoever!
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Colour Histogram

• As many histograms 

as axis of the colour 

space.

Ex: RGB Colour space

- Red Histogram

- Green Histogram

- Blue Histogram

• Combined histogram.

Red

Green

Blue
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Resources

• J.C. Russ – Chapters 2

• R. Gonzalez, and R. Woods – Chapter 2


